/  
 ДОКУМЕНТІВ 
20298
    КАТЕГОРІЙ 
30
Про проект  Рекламодавцям  Зворотній зв`язок  Контакт 

Нестаціонарні зірки. Фізичні процеси, які забезпечують нестаціонарність, Детальна інформація

Тема: Нестаціонарні зірки. Фізичні процеси, які забезпечують нестаціонарність
Тип документу: Курсова
Предмет: Фізика, Астрономія
Автор: фелікс
Розмір: 0
Скачувань: 1423
Скачати "Курсова на тему Нестаціонарні зірки. Фізичні процеси, які забезпечують нестаціонарність"
Сторінки 1   2   3   4   5   6   7   8  
Зміст:

Вступ

Термодинамічна модель для змінних зірок (цефеїд)

Типи пульсуючих зірок

Цефеїди

W Діви

RR Ліри

SX Фенікса

\x03B2 Цефея

ZZ Кита

\x039F Кита (Міріди)

Що таке міріди?

Довгоперіодичні змінні

Пульсації і ударні хвилі

Емісійні спектральні лінії

Навколозоряні оболонки

Молекулярні мазери

Напівправильні змінні зорі

Космічні мазери

Пояснення змінності зірок пульсаціями виникла як гіпотеза в XIX сторіччі. Вона базувалася на відкритті у пульсуючих зірок періодичного доплерівського зміщення спектральних ліній і змін температури цефеїд протягом циклу. На початку 20 сторіччя з'явилися публікації А.С. Еддінгтона, що заклали основи теорії пульсацій. Розглянемо термодинамічну модель пульсації змінних зірок (цефеїд), запропоновану Еддінгтоном у 1926 р.

Термодинамічна модель для змінних зірок (цефеїд)

Гравітаційні сили утримують зоряну речовину від розлітання. У нормальної зорі тиск газу і сила тяжіння в точності врівноважують один одного. Проста модель дозволяє розглянути деякі особливості такої рівноваги. На мал.1 показаний рухливий важкий поршень, що може переміщатися в циліндрі. У циліндрі під поршнем знаходиться газ. Поршень стискує цей газ і заважає молекулам газу розлетітися. Сила тяжіння рухає поршень униз, проте він не може опуститися до самого дна. Він знаходиться на певній висоті над дном циліндра. Якщо поршень опуститься вниз, то газ під ним додатково стиснеться, його тиск зросте і поверне поршень в положення рівноваги. Коли поршень нерухомий, його вага в точності компенсується тиском газу під ним. Такий стан дуже схоже на рівновагу між силою ваги і тиском газу в будь-якій точці в надрах зорі.

Якщо ж ми тепер спеціально виведемо поршень із рівноваги і трохи притиснемо його униз, то поршень почне коливатися. Якщо поршень опуститься нижче положення рівноваги, то тиск газу перевищить його вагу і виштовхне поршень. Якщо ж він підніметься вище положення рівноваги, то тиск газу впаде, і сила тяжіння поверне поршень униз. Тепер поршень уже не буде залишатися в положенні рівноваги. Якщо він колись почне рухатися, то потім буде по інерції поскочувати положення рівноваги і буде коливатися вгору і вниз між двома крайніми точками. Газ при цьому служить свого роду пружиною. При стиснені поршень передає газу частину своєї енергії. Під час розширення газу ця енергія повертається поршню. Втрати енергії не відбувається, оскільки в нашій моделі тертям можна знехтувати. За таких умов поршень буде переміщатися в циліндрі нескінченно довго. Якщо тертя відсутнє, то максимальне відхилення поршня від середньої точки буде постійним. Період коливань поршня залежить від характеристик нашої моделі, наприклад від маси поршня і від середньої температури газу тощо.

Поводження зірок загалом нагадує нашу модель. Якщо стиснути зірку рівномірно з усіх боків, а потім «відпустити», то й зрослий тиск газу буде розштовхувати зоряну речовину у всі сторони назовні, і діаметр зірки перевищить рівноважне значення. Після цього сила тяжіння виявиться більше тиску газу. Вона буде повертати газ до центру зірки. Зірка почне пульсувати. Якщо її колись вивести з рівноваги, то потім ці пульсації будуть продовжуватися довго. Період пульсації зірки можна обчислити за аналогією з періодом пульсації поршня, знаючи її властивості: масу, розподіл температури по глибині, а також її внутрішню будову.

Проте ми занадто спростили нашу модель — як для поршня, так і для зірки. На поршень, звісно ж, діють сили тертя. Розмах його коливань буде поступово зменшуватися під дією цих сил, і, нарешті, коливання загаснуть. Через деякий час поршень зупиниться (див. мал. 2). У надрах зірки також відбуваються процеси, подібні тертю, що гальмують її коливання. Можна розрахувати, що якщо штучно вивести зірку з положення рівноваги, то вона здійснить всього 5-10 тисяч коливань. Щоб повернутися в рівновагу, зірці буде потрібно лише біля 100 років. Проте спостереження показують, що зірка Дельта Цефея, відкрита в 1784 р., пульсує з незмінною силою. Що ж служить мотором, який підтримує пульсації цих зірок, хоча вони, здавалося б, повинні були загаснути за відносно короткий час? Еддінгтон запропонував у своїй книзі один із можливих засобів пояснення такого процесу. Крізь зовнішні прошарки кожної зірки проникає випромінювання, що виникає в її центрі. Щоб імітувати цей процес за допомогою нашої моделі, уявимо собі, що циліндр виготовлений із прозорого матеріалу, а крізь нього проходить потужне світлове випромінювання (див. мал. 3). Газ всередині циліндра, як і зоряна речовина, не зовсім прозорий. Він поглинає частину цього випромінювання.

При цьому газ у циліндрі нагрітий так сильно, що різниця температур між газом і навколишнім середовищем дуже велика, і циліндр випромінює за кожну секунду рівно стільки ж енергії, скільки одержує газ за рахунок часткового поглинання світлових променів.

Тепер виведемо поршень із рівноваги і трохи стиснемо газ. При цьому тиск і температура газу зростуть. Тоді, в принципі, можуть реалізуватися два різних випадки. Стиснутий газ може поглинати випромінювання сильніше або слабше, ніж розріджений. Розглянемо перший випадок. Якщо поглинання зростає при стиснені, то, коли поршень опуститься, температура газу буде підвищуватися швидше, ніж в положенні рівноваги. При цьому газ нагріється, і його тиск зросте більше, ніж просто під впливом поршня. Надлишковий тиск сильніше виштовхне поршень назовні, ніж у другому випадку. Після того, як поршень мине положення рівноваги, газ стане розрідженим, а його температура впаде. При цьому він буде поглинати менше енергії, ніж у положенні рівноваги. Газ остигне, його тиск зменшиться, і поршень швидко опуститься, долаючи силу тертя.

Те ж саме справедливо і для зірок. Якщо зоряна речовина в певному прошарку зірки буде при стиснені поглинати більше енергії і розігріватися, то ця зірка зможе пульсувати, а пульсації будуть підтримуватися випромінюванням, що виникає в її надрах. Якщо така зірка стиснеться, то випромінювання, що йде з її надр до поверхні, не буде так само легко проходити крізь її зовнішні шари. При цьому газ розігріється і зірка розшириться. Розширення наступає після фази стиснення. Речовина стає більш прозорою, вона пропускає більше енергії в навколишній простір, внутрішні частини зорі охолоджуються, і сила тяжіння знову призведе до стиснення зірки. Зоряна речовина служить свого роду вентилем для проникаючого назовні випромінювання. Цей вентиль відчиняється і закривається в ритмі пульсацій зірки.

Такий механізм Еддінгтон описав у своїй книзі вже в 1926 р. Однак теорія Еддінгтона не цілком пояснювала явища пульсації. Одна з розбіжностей полягає в такому. Знаючи світність у температуру, можна обчислити радіус фотосфери. Тому можна було обчислити криву зміни фотосферного радіуса з кривою блиску. З іншого боку, сумуючи зміни радіуса по кривій зміни променевої швидкості, можна побудувати другу криву зміни радіуса того прошарку, у якому утворяться спектральні лінії поглинання, а він повинен прилягати до фотосфери. Виявляється, що ці криві розходяться по фазі, вони зміщені в часі.

Друга хиба теорії Еддінгтона полягає в тому, що вона не вказує джерела енергії, що спроможна підтримувати коливання. Вільні ж коливання повинні були б незабаром згасати.

Сторінки 1   2   3   4   5   6   7   8  
Коментарі до даного документу
Додати коментар