/  
 ДОКУМЕНТІВ 
20298
    КАТЕГОРІЙ 
30
Про проект  Рекламодавцям  Зворотній зв`язок  Контакт 

Метод розгалужень і меж. Евристичні алгоритми. Застосування принципу оптимальності, Детальна інформація

Тема: Метод розгалужень і меж. Евристичні алгоритми. Застосування принципу оптимальності
Тип документу: Реферат
Предмет: Комп`ютерні науки
Автор: Олексій
Розмір: 0
Скачувань: 931
Скачати "Реферат на тему Метод розгалужень і меж. Евристичні алгоритми. Застосування принципу оптимальності"
Сторінки 1   2   3   4   5  
Реферат на тему:

Метод розгалужень і меж. Евристичні алгоритми. Застосування принципу оптимальності

1. Метод розгалужень і меж

Обхід усіх вузлів дерева пошуку варіантів може виявитися надто довгим. Наприклад, якщо в дереві всі вузли є допустимими, кожний проміжний вузол має m синів, а глибина дерева n, то всього в дереві 1+m+m2+ … +mn=(mn+1-1)/(m-1) вузлів. Уже за m=10 та n=10 це більш, ніж 1010. Якщо припустити, що комп'ютер здатний обробити 105 вузлів за секунду, то обхід такого дерева триватиме 105 секунд, або приблизно добу.

Існує багато практичних задач, де вимагається відшукати чи побудувати не всі можливі варіанти, а лише один із них, найкращий у деякому розумінні, визначеному в задачі. Отже, тут з'являється таке поняття, як цінність варіантів. Загальним принципом розв'язання таких задач є скорочення обходу дерева варіантів. У ньому відкидаються деякі гілки, про які можна стверджувати, що вони не містять варіантів більш цінних, ніж уже знайдені. Розглянемо приклад.

Задача про три процесори. Нехай є три процесори, здатні виконувати завдання з однаковою швидкістю. Є набір завдань, про кожне з яких відомий час його виконання. Порядок виконання завдань неважливий. Якщо процесор почав виконувати завдання, то виконує його до кінця протягом зазначеного часу. Переключення процесора на виконання нового завдання відбувається миттєво. Треба так розподілити завдання між процесорами, шоб момент закінчення останнього завдання був мінімальним. Назвемо цю величину вартістю розподілу. Отже, займемося обчисленням мінімальної вартості серед можливих розподілів. Сам розподіл, що забезпечує таку вартість, для початку нас не цікавитиме.

Приклад. Нехай є 6 завдань, час виконання яких відповідно 7, 8, 9, 10, 11, 12. Якщо в зазначеному порядку розподілити перші три завдання між процесорами, а потім давати їх у тому ж порядку процесорам, що звільняються, то перший процесор закінчить роботу в момент 7+10=17, другий – у момент 8+11=19, а третій – 9+12=21. Маємо вартість 21. Проте їх можна розподілити інакше – 7+12, 8+11, 9+10, одержавши вартість 19.\xF0E7

Перше, що ми зробимо в розв'язанні задачі – упорядкуємо завдання за незростанням часу їх виконання. Отже, нехай P1, … , Pn – завдання, часи виконання T1, … , Tn яких задовольняють нерівності T1 \xF0B3 … \xF0B3 Tn. Розподіл можна подати послідовністю пар вигляду (i; k), де i – номер завдання, k – номер процесора, на якому воно виконується. Наприклад, за часів 12, 11, 10, 9, 8, 7 найкращий розподіл подається як

<(1; 1), (2; 2), (3; 3), (4; 3), (5; 2), (6; 1)>.

Подібно до розміщень ферзів, можна говорити про повний розподіл – довжини n, та неповний – меншої довжини. Так само утворимо дерево пошуку розподілів. Його коренем є порожній розподіл, синами кореня – три розподіли <(1; 1)>, <(1; 2)>, <(1; 3)> тощо, тобто синами кожного розподілу вигляду

v=<(1; k1), … , (i; ki)>

за i
v1=<(1; k1), … , (i; ki), (i+1; 1)>,

v2=<(1; k1), … , (i; ki), (i+1; 2)>,

v3=<(1; k1), … , (i; ki), (i+1; 3)>.

Повні розподіли є листками вигляду <(1; k1), … , (n; kn)>.

Тепер займемося упорядкуванням обходу дерева таким чином, щоб варіанти з меншою вартістю оброблялися якомога раніше, а варіанти з більшою вартістю – якомога пізніше. За розподілом v=<(1; k1), … , (i; ki)>, де i\xF0A3 n, неважко обчислити трійку часів роботи процесорів (S1, S2, S3) з його виконання. Очевидно, його вартістю є найбільше з S1, S2, S3. Такий розподіл за i
(S1+Ti+1, S2, S3), (S1, S2+Ti+1, S3), (S1, S2, S3+Ti+1).

За i+1=n неважко вибрати найменшу з цих трьох вартостей. Проте за i+1
Розглянемо найпростіший спосіб такого оцінювання. Очевидно, що за неповного розподілу v перших i завдань із трійкою часів (S1, S2, S3) всі розподіли, що є його нащадками, мають вартість не меншу, ніж

E(v)=max{S1, S2, S3, min{S1, S2, S3}+Ti+1}.

Отже, оцінка E(v) є нижньою межею для вартості нащадків розподілу v.

Організуємо обхід дерева розподілів таким чином, що:

для кожного з вузлів обчислюється зазначена оцінка вартості,

вузли розглядаються у порядку зростання їх оцінок,

вузли з оцінкою, більшою від вартості вже одержаного повного розподілу, взагалі не розглядаються.

Ці міркування складають суть методу розгалужень і меж. Упорядкування вузлів робить обхід цілеспрямованим, а відкидання явно неперспективних піддерев скорочує його.

Уточнимо організацію даних для обробки вузлів у зазначеному порядку. Оскільки нас цікавлять не самі розподіли, а лише їх вартість, у вузлах дерева будемо зберігати тільки трійку часів та номер завдання, розподіленого останнім. Маючи список часів T[1], … , T[n] обробки завдань, неважко за цими даними обчислити оцінку вартості для неповних розподілів та саму вартість для повних. Для наочності цю величину також зберігатимемо у вузлі. Отже, вузол дерева подається трійкою часів S[1], S[2], S[3], номером завдання i та оцінкою вартості E, яка за i
max{ S[1], S[2], S[3], min{ S[1], S[2], S[3]}+T[i+1]}.

Очевидно, що за i=n-1 ця величина є вартістю повного розподілу, який подається "кращим із синів" цього вузла дерева.

Сторінки 1   2   3   4   5  
Коментарі до даного документу
Додати коментар