Розв`язання систем лінійних рівнянь методом Гауса, Детальна інформація

Розв`язання систем лінійних рівнянь методом Гауса
Тип документу: Реферат
Сторінок: 5
Предмет: Комп`ютерні науки
Автор: Григорчук Володимир
Розмір: 15.9
Скачувань: 2140
Коломийський коледж комп’ютерних наук

Кафедра комп’ютерних

дисциплін

Реферат з дисципліни

Алгоритми мови та програмування

Розв’язання систем

лінійних

рівнянь методом Гауса

Виконав:

Студент групи 1-кн-2

Григорчук Володимир

Прийняв:

Яремчук Богдан Ярославович

Коломия 1999

Розв'язування систем лінійних рівнянь методом Гаусса.

а) Зведення системи лнийних рівнянь до ступінчастого вигляду.

Перейдемо до вивчення питания (про розв'язування систем ліній рівнянь. Нехай дано довільну систему т лінійних рівнянь з п невадомими.

a11x1 +a12x2 + ……+ a1nxn = b1,

a21x1 +a22x2 + ……+ a2nxn = b2,

………………………………..

am1x1 +am2x2 + …..+ amnxn = bm,

У цій системі, принаймні, один з коефіцієнтів ai1 (i = 1,2,..., m) відмінний від нуля, бо в противному paзi система (1) не була б системою з п невідомими. Якщо a11 = 0, а, наприклад, as1 ( 0, то переставивши перше i s-те рівняння, дістанемо систему, еквівалентну системі (1). У першому piвнянні цієї системи коефіцієнт при невідомому x1 буде відмінний від нуля. Тому вважатимемо, що в системі (1) а11 ( 0.

Випишемо розширену матрицю системи (1), відокремивши для зруч-ності вертикальною рискою стовпець вільних членів:

a11 a12 … a1n b1

a21 a22 … a2n b2

………………….

am1 am2 … amn bm

Застосовуючи елементарні перетворення рядків, зведемо матрицю (2) до ступінчатого вигляду. Дістанемо деяку ступінчасту матрицю.

\x0100' = (a'ik(b'i) розміру m x (n + 1). Позначимо символом S (\x0100') систему лінійних рівнянь, розширеною матрицею якої е ступінчаста матриця

\x0100' = (a'ik(b'i).

The online video editor trusted by teams to make professional video in minutes