Похідна, Детальна інформація
Похідна
Зміст
Вступ............................................................................................................................1
Розділ 1. Основні теоретичні відомості.................................................................2
Походження поняття похідної....................................................................2
Екстремуми функції.....................................................................................5
Зростання та спадання функції...................................................................9
Найбільше та найменше значення функції..............................................11
Означення дотичної, під дотичної, нормалі............................................13
Розділ 2. Застосування похідної............................................................................17
Правила диференціювання........................................................................17
Дослідження функції та побудова її графіка...........................................21
Застосування похідної для розв’язування рівнянь..................................26
Текстові задачі на екстремум....................................................................28
Висновок....................................................................................................................31
Список використаної літератури.........................................................................32
Вступ
Розділ алгебри та початків аналізу “Похідна та її застосування” займає значне місце у шкільному курсі математики, в першу чергу тому, що має велике прикладне значення.
Програма з математики для загальноосвітньої школи відводить на вивчення теми “Похідна та її застосування” приблизно, 26 годин (загальноосвітньої школи), 46 годин (ліцеї і гімназії з поглибленим вивченням математики).
Основна складність полягає в тому, щоб навчити школярів застосувати похідну для дослідження функцій, розв’язання прикладних задач алгебри та геометрії. Показати алгоритми застосування похідної, що значно полегшує розв’язання багатьох типів задач.
Об’єктом дослідження даної атестаційної курсової роботи є питання: застосування похідної для дослідження функцій на монотонність та екстремум, побудова графіків функцій після їх повного дослідження, знаходження найбільшого та найменшого значення функції на відрізку, прикладні задачі на знаходження найбільшого та найменшого значення функції, складання рівняння дотичної, нормалі, піддотичної і текстові задачі на екстремум функції.
Робота складається з вступу і двох основних частин: основні теоретичні відомості, де наведено означення похідної, історія виникнення похідної, основні теореми, необхідні та достатні умови зростання (спадання) функції, достатня ознака екстремуму функції, та наведені алгоритми розв’язання конкретного типу задач; другий розділ, який розбито на підрозділи, в якому розглядаються різноманітні приклади, наводиться їх розв’язання з повним поясненням.
Розділ 1
Основні теоретичні відомості
1.1. Походження поняття похідної
Ряд задач диференціального вирахування був вирішений ще в стародавності.
Основне поняття диференціального вирахування – поняття похідної – виникло в XVII ст. у зв'язку з необхідністю вирішення ряду задач з фізики, механіки і математики, у першу чергу наступних двох: визначення швидкості прямолінійного нерівномірного руху і побудови дотичної до похідної плоскої кривої.
і називається диференціалом (dx), Ньютон називав моментом.
Ньютон прийшов до поняття похідної, виходячи з питань механіки. Свої результати в цій області він виклав у трактаті, названому їм «Метод флюксій і нескінченних рядів», що був складений близько 1671 р. Припускають, що Ньютон відкрив свій метод флюксій ще в середині 60-х років XVII в., однак вищезгаданий його трактат був опублікований посмертно лише в 1736 р.
Математиків XV - XVII ст. довго хвилювало питання про перебування загального методу для побудови дотичної в будь-якій точці кривої. Задача ця була зв'язана також з вивченням рухів тіл і з відшуканням екстремумів найбільших і найменших значень різних функцій.
Вступ............................................................................................................................1
Розділ 1. Основні теоретичні відомості.................................................................2
Походження поняття похідної....................................................................2
Екстремуми функції.....................................................................................5
Зростання та спадання функції...................................................................9
Найбільше та найменше значення функції..............................................11
Означення дотичної, під дотичної, нормалі............................................13
Розділ 2. Застосування похідної............................................................................17
Правила диференціювання........................................................................17
Дослідження функції та побудова її графіка...........................................21
Застосування похідної для розв’язування рівнянь..................................26
Текстові задачі на екстремум....................................................................28
Висновок....................................................................................................................31
Список використаної літератури.........................................................................32
Вступ
Розділ алгебри та початків аналізу “Похідна та її застосування” займає значне місце у шкільному курсі математики, в першу чергу тому, що має велике прикладне значення.
Програма з математики для загальноосвітньої школи відводить на вивчення теми “Похідна та її застосування” приблизно, 26 годин (загальноосвітньої школи), 46 годин (ліцеї і гімназії з поглибленим вивченням математики).
Основна складність полягає в тому, щоб навчити школярів застосувати похідну для дослідження функцій, розв’язання прикладних задач алгебри та геометрії. Показати алгоритми застосування похідної, що значно полегшує розв’язання багатьох типів задач.
Об’єктом дослідження даної атестаційної курсової роботи є питання: застосування похідної для дослідження функцій на монотонність та екстремум, побудова графіків функцій після їх повного дослідження, знаходження найбільшого та найменшого значення функції на відрізку, прикладні задачі на знаходження найбільшого та найменшого значення функції, складання рівняння дотичної, нормалі, піддотичної і текстові задачі на екстремум функції.
Робота складається з вступу і двох основних частин: основні теоретичні відомості, де наведено означення похідної, історія виникнення похідної, основні теореми, необхідні та достатні умови зростання (спадання) функції, достатня ознака екстремуму функції, та наведені алгоритми розв’язання конкретного типу задач; другий розділ, який розбито на підрозділи, в якому розглядаються різноманітні приклади, наводиться їх розв’язання з повним поясненням.
Розділ 1
Основні теоретичні відомості
1.1. Походження поняття похідної
Ряд задач диференціального вирахування був вирішений ще в стародавності.
Основне поняття диференціального вирахування – поняття похідної – виникло в XVII ст. у зв'язку з необхідністю вирішення ряду задач з фізики, механіки і математики, у першу чергу наступних двох: визначення швидкості прямолінійного нерівномірного руху і побудови дотичної до похідної плоскої кривої.
і називається диференціалом (dx), Ньютон називав моментом.
Ньютон прийшов до поняття похідної, виходячи з питань механіки. Свої результати в цій області він виклав у трактаті, названому їм «Метод флюксій і нескінченних рядів», що був складений близько 1671 р. Припускають, що Ньютон відкрив свій метод флюксій ще в середині 60-х років XVII в., однак вищезгаданий його трактат був опублікований посмертно лише в 1736 р.
Математиків XV - XVII ст. довго хвилювало питання про перебування загального методу для побудови дотичної в будь-якій точці кривої. Задача ця була зв'язана також з вивченням рухів тіл і з відшуканням екстремумів найбільших і найменших значень різних функцій.
The online video editor trusted by teams to make professional video in
minutes
© Referats, Inc · All rights reserved 2021