Параметричний тест Гольдфельда-Квандта, Детальна інформація
Параметричний тест Гольдфельда-Квандта
Параметричний тест Гольдфельда-Квандта
Коли сукупність спостережень невелика, то розглянути вище метод не застосовний.
, тобто дисперсія залишків зростає пропорційно до квадрата однієї з незалежних змінних медалі:
Y=ХА=u.
Для виявлення наявності гетероскедастичності згадані вчені склали параметричний тест, в якому потрібно виконати такі кроки.
Крок 1. Упорядкувати спостереження відповідно до величини елементів вектора Хj.
Крок 2. Відкинути с спостережень, які мітять в центрі вектора. Згідно з експериментальними розрахунками автори знайшли оптимальні співвідношення між параметрами с і n, де n – кількість елементів вектора хj:
.
перевищує кількість змінних m.
Крок 4. Знайти суму квадратів залишків за першою (1) і другою (2) моделями S1 і S2:
u1,
Де u1 – залишки за моделлю (1);
u2,
Крок 5. Обчислити критерій
,
Fтабл, то гетероскедастичність відсутня.
Приклад 1. У табл. 1. наведено дані про загальні витрати та витрати на харчування. Для цих даних перевірити гіпотезу про відсутність гетероскедастичності.
Таблиця 1.
u u2
1 2,30 15 2,16 0,14 0,020
2 2,20 15 2,16 0,04 0,002
3 2,08 16 2,20 -0,12 0,015
4 2,20 17 2,25 -0,05 0,002
5 2,10 7 2,25 -0,15 0,022
6 2,32 18 2,29 0,26 0,0007
7 2,45 19 2,34 0,11 0,012
8 2,50 20
9 2,20 20
Коли сукупність спостережень невелика, то розглянути вище метод не застосовний.
, тобто дисперсія залишків зростає пропорційно до квадрата однієї з незалежних змінних медалі:
Y=ХА=u.
Для виявлення наявності гетероскедастичності згадані вчені склали параметричний тест, в якому потрібно виконати такі кроки.
Крок 1. Упорядкувати спостереження відповідно до величини елементів вектора Хj.
Крок 2. Відкинути с спостережень, які мітять в центрі вектора. Згідно з експериментальними розрахунками автори знайшли оптимальні співвідношення між параметрами с і n, де n – кількість елементів вектора хj:
.
перевищує кількість змінних m.
Крок 4. Знайти суму квадратів залишків за першою (1) і другою (2) моделями S1 і S2:
u1,
Де u1 – залишки за моделлю (1);
u2,
Крок 5. Обчислити критерій
,
Fтабл, то гетероскедастичність відсутня.
Приклад 1. У табл. 1. наведено дані про загальні витрати та витрати на харчування. Для цих даних перевірити гіпотезу про відсутність гетероскедастичності.
Таблиця 1.
u u2
1 2,30 15 2,16 0,14 0,020
2 2,20 15 2,16 0,04 0,002
3 2,08 16 2,20 -0,12 0,015
4 2,20 17 2,25 -0,05 0,002
5 2,10 7 2,25 -0,15 0,022
6 2,32 18 2,29 0,26 0,0007
7 2,45 19 2,34 0,11 0,012
8 2,50 20
9 2,20 20
The online video editor trusted by teams to make professional video in
minutes
© Referats, Inc · All rights reserved 2021