Статистичні ігри. Статистичні моделі та методи, Детальна інформація

Статистичні ігри. Статистичні моделі та методи
Тип документу: Реферат
Сторінок: 4
Предмет: Математика
Автор: Олексій
Розмір: 11.1
Скачувань: 1017
Реферат на тему:

“Статистичні ігри.

Статистичні моделі та методи”

Матрична гра, у якій гравець взаємодіє з навколишнім середовищем, не зацікавленим в його програші, і вирішує задачу визначення найбільш вигідного варіанта поведінки з урахуванням невизначеності стану навколишнього середовища, називається статистичною грою чи «грою з природою». Гравець у цій грі називається особою, що приймає рішення (ОПР).

У загальному вигляді платіжна матриця статистичної гри наведена на малюнку 1.

S1 S2 … Sn

A1 A11 A12 ... A1n

A2 A21 A22 ... A2n

… ... ... ... ...

An am1 am2 ... amn

Рис. 1. Загальний вид платіжної матриці статистичної гри

У даній грі рядка матриці (Ai ) - стратегії ОПР, а стовпці матриці (Sj) – стану навколишнього середовища.

На основі методів рішення статистичних ігор можна сформулювати підходи до рішення різноманітних прикладних економічних задач. Одна з таких задач — визначення економічного ефекту інформації.

Для будь-якої економічної задачі, розв'язуваної з використанням статистичних ігор, може бути сформульоване абсолютне мінімальне значення виграшу A0, що ОПР (особа, що приймає рішення) одержить у найгіршій для себе ситуації. Ця величина може дорівнювати, наприклад, сумі витрат на виробництво продукції при нульовому виторзі від її реалізації, максимально можливим втратам, що виникли внаслідок прийнятого рішення, і т.д. Дана величина завжди може бути оцінена і її значення завжди кінцеве. Це дозволяє привести будь-яку платіжну матрицю статистичної гри до умови незаперечності коефіцієнтів. Умова незаперечності гарантує визначення будь-якого значення виграшу як позитивної величини. Крім того, дотримання даної умови дозволяє визначити величину додаткового виграшу за рахунок підвищення вірогідності інформації.

У процесі ухвалення рішення для визначення найбільш вигідної стратегії ОПР необхідно враховувати можливі стани навколишнього середовища і визначити їх імовірності. ОПР складає прогноз розвитку ситуації FA, відповідно до якого кожний стан навколишнього середовища Sj має імовірність pj. Даний прогноз може реалізуватися з вірогідністю u (під вірогідністю прогнозу тут варто розуміти частку прогнозів, що реалізувалися, від усіх раніше складених прогнозів за умови, що якщо прогноз не реалізувався, те виграш буде дорівнює мінімально гарантованій величині).

Прагнучи підвищити вірогідність прогнозу, ОПР може скористатися послугами консультаційної служби, що має більший досвід у дослідженні даної предметної області. Консультаційна служба складає прогноз розвитку ситуації FB (FB > FA), відповідно до якого кожний стан навколишнього середовища Sj має імовірність pj. Даний прогноз може реалізуватися з вірогідністю u (u > u).

Для рішення задачі визначення економічного ефекту прогнозу консультаційної служби приймемо наступні три умови:

1. При відсутності якої-небудь інформації щодо величини виграшу й імовірностей станів навколишнього середовища (u = 0) ОПР може зробити єдине припущення – про те, що величина виграшу при будь-якім рішенні буде не менше A0, що, після приведення платіжної матриці до ненегативної форми, дорівнює нулю.

2. Прийняття ОПР прогнозу з вірогідністю u гарантує йому величину середнього виграшу відповідно до обраної їм стратегією з імовірністю u і величину виграшу A0 з імовірністю 1-u.

3. Рішення задачі визначення ефекту прогнозу консультаційної служби має сенс, лише якщо u > u.

Визначення ОПР найбільш вигідної стратегії за прогнозом FB дозволяє йому одержати додатковий виграш за рахунок:

1. зміни прийнятого рішення;

2. підвищення вірогідності прогнозу.

В умовах, коли значення параметра вірогідності прогнозу менше одиниці, для визначення найбільш вигідних стратегій використовується критерій Ходжа-Лемана (формула (7), заняття 6).

Величина додаткового виграшу, одержуваного внаслідок зміни прийнятого рішення Vx, може бути визначена по формулі:

Vx = u(Vf - Vr)

де Vf - величина виграшу ОПР, отриманого при виборі найбільш вигідної стратегії за прогнозом FB; Vr – величина виграшу, що ОПР фактично одержить відповідно до прогнозу FB, якщо він вибере найбільше вигідну стратегію за прогнозом FA.

Величина додаткового виграшу, одержуваного внаслідок підвищення вірогідності прогнозу Vy, може бути визначена по формулі:

Vy = Vf(u – u)

Величину загального ефекту від використання інформації, що міститься в прогнозі для ОПР Vd можна визначити як суму додаткових виграшів унаслідок зміни рішення і збільшення вірогідності прогнозу:

The online video editor trusted by teams to make professional video in minutes